677 research outputs found

    Approximability and proof complexity

    Full text link
    This work is concerned with the proof-complexity of certifying that optimization problems do \emph{not} have good solutions. Specifically we consider bounded-degree "Sum of Squares" (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nn-variable degree-dd proof can be found in time nO(d)n^{O(d)}. Furthermore, the SDP is dual to the well-known Lasserre SDP hierarchy, meaning that the "d/2d/2-round Lasserre value" of an optimization problem is equal to the best bound provable using a degree-dd SOS proof. These ideas were exploited in a recent paper by Barak et al.\ (STOC 2012) which shows that the known "hard instances" for the Unique-Games problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the Balanced-Separator integrality gap instances proposed by Devanur et al.\ can have their optimal value certified by a degree-4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot--Vishnoi Max-Cut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor .952 (>.878> .878) using a constant-degree proof. These investigations also raise an interesting mathematical question: is there a constant-degree SOS proof of the Central Limit Theorem?Comment: 34 page

    Polynomial bounds for decoupling, with applications

    Get PDF
    Let f(x) = f(x_1, ..., x_n) = \sum_{|S| <= k} a_S \prod_{i \in S} x_i be an n-variate real multilinear polynomial of degree at most k, where S \subseteq [n] = {1, 2, ..., n}. For its "one-block decoupled" version, f~(y,z) = \sum_{|S| <= k} a_S \sum_{i \in S} y_i \prod_{j \in S\i} z_j, we show tail-bound comparisons of the form Pr[|f~(y,z)| > C_k t] t]. Our constants C_k, D_k are significantly better than those known for "full decoupling". For example, when x, y, z are independent Gaussians we obtain C_k = D_k = O(k); when x, y, z, Rademacher random variables we obtain C_k = O(k^2), D_k = k^{O(k)}. By contrast, for full decoupling only C_k = D_k = k^{O(k)} is known in these settings. We describe consequences of these results for query complexity (related to conjectures of Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening of the DFKO Inequality).Comment: 19 pages, including bibliograph

    Coin flipping from a cosmic source: On error correction of truly random bits

    Full text link
    We study a problem related to coin flipping, coding theory, and noise sensitivity. Consider a source of truly random bits x \in \bits^n, and kk parties, who have noisy versions of the source bits y^i \in \bits^n, where for all ii and jj, it holds that \Pr[y^i_j = x_j] = 1 - \eps, independently for all ii and jj. That is, each party sees each bit correctly with probability 1ϵ1-\epsilon, and incorrectly (flipped) with probability ϵ\epsilon, independently for all bits and all parties. The parties, who cannot communicate, wish to agree beforehand on {\em balanced} functions f_i : \bits^n \to \bits such that Pr[f1(y1)=...=fk(yk)]\Pr[f_1(y^1) = ... = f_k(y^k)] is maximized. In other words, each party wants to toss a fair coin so that the probability that all parties have the same coin is maximized. The functions fif_i may be thought of as an error correcting procedure for the source xx. When k=2,3k=2,3 no error correction is possible, as the optimal protocol is given by fi(xi)=y1if_i(x^i) = y^i_1. On the other hand, for large values of kk, better protocols exist. We study general properties of the optimal protocols and the asymptotic behavior of the problem with respect to kk, nn and \eps. Our analysis uses tools from probability, discrete Fourier analysis, convexity and discrete symmetrization

    Noise stability of functions with low influences: invariance and optimality

    Full text link
    In this paper we study functions with low influences on product probability spaces. The analysis of boolean functions with low influences has become a central problem in discrete Fourier analysis. It is motivated by fundamental questions arising from the construction of probabilistically checkable proofs in theoretical computer science and from problems in the theory of social choice in economics. We prove an invariance principle for multilinear polynomials with low influences and bounded degree; it shows that under mild conditions the distribution of such polynomials is essentially invariant for all product spaces. Ours is one of the very few known non-linear invariance principles. It has the advantage that its proof is simple and that the error bounds are explicit. We also show that the assumption of bounded degree can be eliminated if the polynomials are slightly ``smoothed''; this extension is essential for our applications to ``noise stability''-type problems. In particular, as applications of the invariance principle we prove two conjectures: the ``Majority Is Stablest'' conjecture from theoretical computer science, which was the original motivation for this work, and the ``It Ain't Over Till It's Over'' conjecture from social choice theory
    corecore